Category Archives: Leonardo da Vinci

Da Vinci in Las Vegas

When in the 15th Century a young Leonardo da Vinci discovered fossilized shells, whale and fish bones in mountain caves in the north Italian Alps he questioned the prevailing Judeo-Christian worldview of his time. Da Vinci is famous for his exquisite paintings and during his lifetime was sought after as a military engineer and inventor. His anatomical drawings are so precise that they are still being used by medical students 500 years later.

A new exhibition at the Las Vegas Natural History Museum brings to light the lesser-known brilliance of da Vinci’s discoveries in geology and paleontology.

The claim that fossils were swept there by the biblical flood is a completely inadequate explanation. So the surface of the earth has changed over time, with land where once there was sea.

J.Jones, Leonardo da Vinci’s earth-shattering insights about geology, theguardian.com, 23/11/2011

Here is a sneak preview of Da Vinci Machines & Robotics, the acclaimed traveling exhibition that explores and connects da Vinci’s studies in nature, anatomy, mechanics, flight and robotics.

Las Vegas Natural History Museum until 10 September 2022.
Book tickets online

Check out the installation in this 2 minute timelapse video.

Learn from Leonardo

“Leonardo da Vinci’s most important legacy was his capacity to generate new ideas.”

For the first time in Australia, community, business and thought leaders will participate in a conversation to explore Leonardo’s technical brilliance alongside his personal attributes of curiosity, observation and reflection, imagination, determination, courage and collaboration.

Join guest speaker, MP Dr Tien Kieu, Victorian Government STEM Ambassador, and panelists to reflect on the importance of collaboration, creative thinking, experimentation and failure at the intersection of science, art, reality and fantasy.

The 60-minute interactive session will be followed by guided tours of the Dare to Imagine: Da Vinci’s Machines exhibition.

The event is hosted by Bendigo Tech School as part of their Tech Futures initiative, in partnership with Discovery Centre Bendigo and the Artisans of Florence International.

Tuesday 31 May, 2022
4.30pm – 6.00pm
Discovery Centre Bendigo, Victoria

The forum will be live-streamed for those who are unable to attend.
For more information and to book your free ticket visit: Bendigo Tech School



Learning should be fun!

Education experts and historians may be able to shed some light on what stage in the evolution of Western civilisation we started to think that learning is a serious affair and somehow separate from playing

This distinction is as misguided, and as unhelpful, as the distinction between the processes that lead to scientific discovery and those that are deployed when creating art.

In the late 1990s, the Harvard Business Review reported on trends that saw businesses stage experiences that would engage customers in their target markets in novel ways in order to sell more of their goods and services. The appeal of immersive experiences and interaction that the business community learned from the world of theatre and theme parks would become known as the Experience Economy.

The packaging of multi-sensory experiences, however, is nothing new to the cultural sector.

Those working in museums, science centres and galleries understand that visitors are curious creatures, seeking an opportunity to learn, be inspired by an encounter of an aesthetic kind, or enter a world different from their own for a brief period of time.

In these ways, a visit to a place of learning offers us the same joy of discovery that travel provides us. 

In the case of the internationally renowned Da Vinci Machines exhibition, visitors travel back in time to the Renaissance when innovation and creativity in the arts enabled a scientific revolution. By interacting with the functioning models constructed from Leonardo’s drawings, visitors gain a rare glimpse inside the mind of the genius polymath.

There are many ‘a ha’ moments in this exhibition and the Discovery Centre Bendigo has scheduled a number of events that will enhance the experience and make it even more enjoyable and memorable. These include Mona Lisa and Merlot to have fun as you learn to paint your own masterpiece, and Taste of Italy to learn about the history of Italian Renaissance art as you sample wines from acclaimed Heathcote wineries.

A young visitor learning how ball bearings reduce friction, a principle of science that is integral in the efficient functioning of machines to this day. Photo courtesy of Discovery Centre Bendigo, March 2022

The role of imagination in science

Albert Einstein may, or may not, have said that “the definition of insanity is doing the same thing over and over and expecting different results.”

A century ago the American philosopher, logician, mathematician and scientist Charles Sanders Peirce wrote that inductive and deductive reasoning on their own never led to a new idea. He warned us that by analyzing the past, and crunching numbers to predict the future, we are doing nothing more than extrapolation. If we stick to measuring what we can already measure, we cannot create a future that is different from the past.

Since Archimedes, we have taken comfort in following the Scientific Method; namely systematic observation and experimentation, inductive and deductive reasoning, and the formation and testing of hypotheses and theories. What has been less understood is the role of the imagination in science.

Without imagination, science would never ever have existed. Imagination and innovation are key to achieving change.

As the past few years of the Covid-19 pandemic, a global climate in crisis, and political upheavals have demonstrated, our understanding of the world, and our role in it, needs to change. We turn to our heroes Archimedes, Leonardo da Vinci, and Galileo Galilei to celebrate how their imagination and creativity enabled them to see things differently. They understood that everything is connected to everything else, made it possible to see the invisible, applied knowledge from one field to another to generate new knowledge, and had the courage to not give up if their experiments failed.

We have so much to learn from them.

Photo: Galileo: Scientist, Astronomer, Visionary, Waikato Museum, Hamilton NZ, 2021

Critical Thinking, Science and Art

Raphael’s masterpiece, The School of Athens (1509 – 1511) is a who’s who of influential philosophers, mathematicians and scientists spanning 2000 years of Western civilisation.

With Plato and Aristotle as the central figures, the iconic fresco has come to symbolise the connections between art, philosophy and science. Framed by the impressive arch and dwarfed at the feet of the marble statues are Pythagoras, Euclid, Ptolemy, along with a “cameo” self-portrait of Raphael himself.

Creativity and innovation require what in modern times have been separated and labelled as science and art.

Critical thinking and problem-solving are as much prerequisites in the field of arts practice as they are to scientific inquiry.

The iterative nature of the scientific method relies on the imagination. Breakthroughs in science seem to happen out of the blue, but they never are. They are the result of deep thinking, acute observation, meticulous measurement, and rigorous experimentation.

This realisation now seems revolutionary but 500 years ago Leonardo da Vinci and Michelangelo knew it. Galileo too couldn’t have made his breakthrough scientific discoveries without it. Over 2000 years ago Archimedes taught us the importance of inventing experiments to test hypotheses.

The School Of Athens by Raphael Sanzio da Urbino is located inside the Stanza della Segnatura on the second floor of the Vatican Palace, Rome.

Leonardo’s funny bone

It is a little-known fact that Leonardo da Vinci worked in entertainment. Of course, the industry didn’t exist in the Renaissance, but da Vinci was a skilled musician and he created and played quirky and beautiful musical instruments. There are many written accounts of the elaborate theatrical props that da Vinci invented as well as staging that made actors appear and disappear as if by magic for his wealthy patrons.

Da Vinci’s ability to imagine and sketch dragons and other fantastical creatures with wings was key to his genius. He was commissioned by Pope Leo X to create a mechanical lion for the amusement of Francois I, the King of France. The fearsome-looking automaton would propel itself onto the stage. When the King struck it would open its mouth releasing lillies, the King’s floral emblem.

Other accounts tell of actors dressed as angels with wings entering the stage by hidden ropes creating the illusion they had flown from the heavens, much to the delight, awe, and wonder of the guests of the court. Even the sketch of the bicycle, found in the Codex Atlanticus (1478-1519), was thought to have been not so much the precursor to the two-wheeled vehicle but a stage prop.

Visitors to the Museum of Science and History in Jacksonville Florida can see for themselves how entertainment, and specifically the art of comedy, was reshaped during da Vinci’s times.

On 28 October MOSH is hosting a special event with Jacksonville-based comedians.
Tickets include entry to The Da Vinci Machines & Robotics exhibition.

Leonardo da Vinci, Fight between a Dragon and a Lion. British Museum

The nature of genius

What do the world’s greatest thinkers, scientists, artists, and visionaries have in common?

Archimedes of Syracuse, Leonardo Da Vinci and Galileo Galilei drew on the scientific knowledge of their times. They observed, measured, and imagined. They challenged widely accepted and long-held beliefs and created new knowledge. Each of them tested their hypotheses and adjusted their theories. Their discoveries changed the course of history.

We have the privilege of touring the iconic machines and exhibits based on the groundbreaking works of these geniuses. In the process of creating our exhibitions, the Artisans make discoveries of their own and unravel mysteries that bring us closer to understanding the nature of genius.

Not many of us will ever have the impact on the world that Archimedes, Da Vinci and Galilei have had, but we can learn from them.

In the words of the German philosopher, Arthur Schopenhauer:

Talent hits a target no one else can hit;
Genius hits a target no one else can see

Australia’s da Vinci

David Unaipon (1872 – 1967), a Ngarrindjeri man of the Coorong region of South Australia, was an author, inventor, evangelical preacher, and political activist. His many significant accomplishments during a period that book-ends Australian federation challenged the prejudiced stereotypes held about Aboriginal people.

Unaipon spent much of his life reading science books and was particularly fascinated by perpetual motion. His deep understanding of the fundamental principles of physics led to his most successful invention, a sheep-shearing handpiece that converts curvilinear motion into the straight-line movement. This design, partially patented in 1909 greatly improved the efficiency of the cutting blades and is still in use today.

His helicopter design in 1914, based on the aerodynamics of the boomerang, pre-dates the manufacture of the world’s first ‘hovering aircraft’ by 25 years.

His research into the polarisation of light points to him also being a pioneer in the field of photonics. In an interview published in the Daily Herald (Adelaide, SA 1/6/1914) he said; “We are gradually coming to the age when we might expect to be able to hurl electricity, like Nature does, for instance, in the shape of lightning.”

Unaipon’s legacy has been re-examined in more recent times, and his image along with his shearing shears design has been on the Australian $50 banknote since 1995.

Perpetual motion: a long history

Since the dawn of technology, humans have sought ways of using machines and inventions to make work easier. Even though we can use machines to create mechanical advantage, it is sadly not possible for any machine to produce more energy than is put into it. As Albert Einstein put it, “Energy cannot be created or destroyed, it can only be changed from one form to another”.

Galileo Galilei never explicitly expressed his thoughts on perpetual motion machines, however, we can see from several of his lecture notes, made while a professor at the University of Padua in Venice, that he clearly understood that perpetual motion machines are indeed not possible. As he eloquently put it, “Nature cannot be deceived”.

When discussing this principle, Galileo used the analogy of drawing water from a well by hand with a bucket. He conjectured, “whoever believes they are able to draw a greater amount of water from a well, in the same time, with the same force is in grave error”.

Leonardo da Vinci sketched a hypothetical perpetual motion machine (pictured here). Hundreds of years before theories of thermodynamics were developed, he understood that despite its allure, such a machine was impossible. He wrote; “Oh ye seekers after perpetual motion, how many vain chimeras have you pursued? Go and take your place with the alchemists.”